A D-D/D-T Fusion Reaction Based Neutron Generator System for Liver Tumor BNCT

نویسندگان

  • H. Koivunoro
  • T. P. Lou
  • J. Reijonen
  • K-N Leung
چکیده

Boron-neutron capture therapy (BNCT) is an experimental radiation treatment modality used for highly malignant tumor treatments. Prior to irradiation with low energetic neutrons, a B compound is located selectively in the tumor cells. The effect of the treatment is based on the high LET radiation released in the B(n,α)Li reaction with thermal neutrons. BNCT has been used experimentally for brain tumor and melanoma treatments. Lately applications of other severe tumor type treatments have been introduced. Results have shown that liver tumors can also be treated by BNCT. At Lawrence Berkeley National Laboratory, various compact neutron generators based on D-D or D-T fusion reactions are being developed. The earlier theoretical studies of the D-D or D-T fusion reaction based neutron generators have shown that the optimal moderator and reflector configuration for brain tumor BNCT can be created. In this work, the applicability of 2.5 MeV neutrons for liver tumor BNCT application was studied. The optimal neutron energy for external liver treatments is not known. Neutron beams of different energies (1eV < E < 100 keV) were simulated and the dose distribution in the liver was calculated with the MCNP simulation code. In order to obtain the optimal neutron energy spectrum with the D-D neutrons, various moderator designs were performed using MCNP simulations. In this article the neutron spectrum and the optimized beam shaping assembly for liver tumor treatments is presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimised BNCT facility based on a compact D-D neutron generator

Background: Boron Neutron Capture Therapy (BNCT) is a very promising treatment for patients suffering gliobastoma multiforme, an aggressive type of brain cancer, where conventional radiation therapies fail. Thermal neutrons are suitable for the direct treatment of cancers which are located at near-tissue-surface deep-seated tumors need harder, epithermal neutron energy spectra. Materials and Me...

متن کامل

Simulation of the BNCT of Brain Tumors Using MCNP Code: Beam Designing and Dose Evaluation

Introduction BNCT is an effective method to destroy brain tumoral cells while sparing the healthy tissues. The recommended flux for epithermal neutrons is 109 n/cm2s, which has the most effectiveness on deep-seated tumors. In this paper, it is indicated that using D-T neutron source and optimizing of Beam Shaping Assembly (BSA) leads to treating brain tumors in a reasonable time where all IAEA ...

متن کامل

طراحی و بهینه‌سازی طیف نوترونی برای درمان تومورهای عمیق مغزی به روش BNCT با کاهش آسیب رسیده به پوست

Boron neutron capture therapy (BNCT) is an effective method for treatment of deep seated brain tumors. This method consists of two stages: injection of boron compound in the patient body, and then irradiation of the region tumors with the neutron beam. It allows for delivery of high linear energy transfer (LET) radiation (particles 4He and 7Li nuclei) to tumors at the cellular level whilst avoi...

متن کامل

Neutron Tube Design Study for Boron Neutron Capture Therapy Application

Radio-frequency (RF) driven ion sources are being developed in Lawrence Berkeley National Laboratory (LBNL) for sealed-accelerator-tube neutron generator application. By using a 5-cm-diameter RF-driven multicusp source H yields over 95% have been achieved. These experimental findings will enable one to develop compact neutron generators based on the D-D or D-T fusion reactions. In this new neut...

متن کامل

Design and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy

Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003